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X-ray free-electron laser diffraction patterns from protein nanocrystals provide

information on the diffracted amplitudes between the Bragg reflections, offering

the possibility of direct phase retrieval without the use of ancillary experimental

diffraction data [Spence et al. (2011). Opt. Express, 19, 2866–2873]. The

estimated continuous transform is highly noisy however [Chen et al. (2014). Acta

Cryst. A70, 143–153]. This second of a series of two papers describes a data-

selection strategy to ameliorate the effects of the high noise levels and the

subsequent use of iterative phase-retrieval algorithms to reconstruct the

electron density. Simulation results show that employing such a strategy

increases the noise levels that can be tolerated.

1. Introduction

The three major problems that plague protein crystallography

are crystal preparation, radiation damage and phase deter-

mination. X-ray free-electron lasers (XFELs) provide the

potential to solve all three problems by the production of

intense but extremely brief X-ray pulses. Appropriate signal

levels can be attained whilst sidestepping the resolution-

limiting effects of radiation damage, as the pulse is so brief

that it terminates before significant radiation damage develops

(Neutze et al., 2000; Barty et al., 2011). The high-intensity

X-ray pulse enables measurable diffraction data to be

obtained from nanocrystals only a few unit cells across.

Solution of the phase problem from such data still presents

a problem however. Molecular replacement has recently been

used to solve the structure of Trypanosoma brucei cysteine

protease cathepsin B from XFEL data (Redecke et al., 2013).

It is not clear if the method of isomorphous replacement can

be suitably adapted because of the experimental difficulty of

obtaining isomorphous nanocrystals. Anomalous dispersion

phasing of XFEL nanocrystal data that incorporates the

effects of ionization damage of heavy atoms in the presence of

the high-fluence XFEL pulse has been proposed (Son et al.,

2011), although its practical utility still requires experimental

verification. Therefore, alternative methods of phasing are of

significant interest.

The diffraction pattern from a nanocrystal has significant,

but weak, amplitude between the Bragg peaks (Vartanyants &

Robinson, 2001). Spence et al. (2011) have shown that the

continuous molecular transform can be estimated from such

data, which provides a possible route to direct reconstruction

of the electron density using phase-retrieval algorithms (Miao

& Sayre, 2000). In the first paper of this series (Chen et al.,

2014) we analysed in detail properties of diffraction patterns

from a collection of nanocrystals of various sizes and their

noise characteristics, and the consequences for estimating the

molecular transform from the diffraction data. In this second

paper we develop a strategy for applying iterative phase

retrieval to the estimated molecular diffraction amplitudes at

low signal-to-noise ratio (SNR) for structure determination.

The methods described are evaluated by simulation and the

results give a picture of the effects of SNR and mean nano-

crystal size on reconstruction of the electron density.

2. Estimating the molecular transform

The first step in reconstructing the electron density is to esti-

mate the molecular transform (the Fourier transform of the

contents of one unit cell) from the nanocrystal diffraction

data. The characteristics of this problem are described in

detail by Chen et al. (2014) and are summarized briefly in this

section. Here we consider only crystals consisting of an inte-

gral number of a single kind of unit cell, although recent

studies indicate that the effect of different and incomplete unit

cells, that can occur when there is more than one molecule in

the unit cell, may be small (Chen & Millane, 2013; Liu et al.,

2014).

The intensity diffracted by a single three-dimensional

crystal of size N1 � N2 � N3 unit cells along the respective

crystal axes, a1, a2 and a3, is given by (Spence et al., 2011; Chen

et al., 2014)

I N; uð Þ ¼ jF uð Þj2S2 N; uð Þ; ð1Þ

where u is the position vector in reciprocal space, N ¼

ðN1;N2;N3Þ is a column vector of the number of unit cells in

each crystal direction and S N; uð Þ is referred to as the shape

transform function given by
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S N; uð Þ ¼
Y3

i¼1

sin �Niai � uð Þ

sin �ai � uð Þ
: ð2Þ

In femtosecond nanocrystallography, typically tens of thou-

sands of usable diffraction patterns are collected from crystals

of varying sizes, shapes and orientations as they pass randomly

in front of the pulsing XFEL beam. The orientation of each

pattern can be determined via auto-indexing algorithms

(Kirian et al., 2010), and upon summing together patterns of

the same orientation class the averaged diffracted intensity,

denoted hIn uð Þin, is given by (Chen et al., 2014)

In uð Þ
� �

n
¼ I Nn; uð Þ
� �

n
¼ jF uð Þj2Q2 uð Þ; ð3Þ

where Nn is the crystal size for the nth nanocrystal, h�in
denotes averaging over the diffraction snapshots and the

averaged shape transform Q2ðuÞ is given by

Q2 uð Þ ¼
P
N

P Nð ÞS2 N; uð Þ; ð4Þ

where PðNÞ ¼ PðN1;N2;N3Þ is the probability density func-

tion (p.d.f.) describing the distribution of crystallite sizes.

If the crystallite sizes in each of the three directions are

independent, then equation (4) reduces to

Q2 uð Þ ¼
Y3

i¼1

P
Ni

P Nið ÞS
2 Ni; uið Þ: ð5Þ

In practice, the nanocrystals will not all be parallelopipeds but

will adopt a variety of sizes and shapes, and will also be subject

to various forms of disorder (Dilanian et al., 2013; Chen et al.,

2014). However, the end result is that the averaged intensity is

described by equation (3) where Q2ðuÞ is appropriately

modified to encapsulate all of these effects (Chen et al., 2014).

Referring to equation (3), the magnitude of the molecular

transform can be obtained from the data by

jF uð Þj2 ¼
In uð Þ
� �

n

Q2 uð Þ
: ð6Þ

The averaged shape transform Q2ðuÞ cannot be calculated

using equation (4) because the size distribution of the nano-

crystals PðNÞ is not known a priori. However, it can be shown

that the averaged shape transform can be estimated directly

from the diffraction data by averaging the diffracted inten-

sities around each Bragg reflection, and is given by (Spence et

al., 2011; Chen et al., 2014)

Q2ðuÞ / Inðu� ubÞ
� �

b;n
; ð7Þ

where ub is the position of the Bragg reflection and h�ib;n
denotes averaging over the region around each Bragg reflec-

tion and over all diffraction snapshots. The estimate of the

averaged shape transform from equation (7) can then be

substituted into equation (6), giving an estimate of the mole-

cular transform from the measured intensity alone. The noise

characteristics of the diffraction and the derived molecular

transform are described in detail by Chen et al. (2014) and are

discussed further in x4.

3. Phase retrieval

Once an estimate of the continuous Fourier amplitude has

been obtained, it is well known that in principle the electron

density (or image) can be reconstructed by using real-space

constraints, usually through the application of iterative

projection algorithms (Sayre, 1952; Fienup, 1982; Bates &

McDonnell, 1989; Millane, 1990; Miao et al., 1999; Elser,

2003a,b; Martin et al., 2012; Rodriguez et al., 2013). Applica-

tion of this approach to coherent X-ray diffraction imaging of

single particles has been amply demonstrated (see, for

example, Spence, 2008).

The problem is usually formulated as that of finding a point

in the intersection of two constraint sets: the set of all func-

tions that have the measured Fourier amplitude and the set of

all functions that are contained within a given finite-extent

region termed the ‘support’. The function in our case is the

electron density of the biological macromolecule under study.

Such a point then satisfies the data and the known real-space

constraints and is therefore a solution to the phase-retrieval

problem.

Iterative projection algorithms (IPAs) are designed to

tackle these constraint satisfaction problems. IPAs seek out

the intersection between two constraint sets by iteratively

searching through the multi-dimensional space that the

problem resides in, using operators called projections.

It is convenient to formulate IPAs as operations on vectors

in an n-dimensional metric space. A vector f ¼ ðf1; � � � ; fnÞ in

this space represents the sampled electron density, where each

of its n components fi corresponds to the electron density at

grid point i. A projection PA is defined as an operation that

takes a vector in this metric space to the closest vector in the

constraint set A in this space. For example, the support

constraint in phase retrieval requires the density in question to

be zero outside the molecular support region S. The projection

operator, PS, that achieves this sets all values of the density

outside the support to zero and leaves the values inside the

support unchanged, i.e.

PSf ¼

�
fi if i 2 S

0 otherwise:
ð8Þ

Similarly, in reciprocal space, the projection operator denoted

PM sets the amplitude of the complex molecular transform

equal to the measured amplitude (the set of all densities with

Fourier amplitudes equal to the measured values is denoted

M) whilst leaving the phase unchanged. The reciprocal-space

amplitudes that are not measured are left at their current

values during the application of the projection so they are free

to change as the algorithm proceeds and are said to ‘float’. The

set of complex numbers that have the same amplitude defines

a circle in the complex plane so that, geometrically, the

projection involves moving the point radially to the closest

point on that circle. The Fourier transform and inverse Fourier

transform operations required to move the point back and

forth between real space and reciprocal space are incorpo-

rated into the projection operator PM which is given by
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PMf ¼ F�1

�
ðFi= Fi

�� ��ÞðIiÞ
1=2 if i 2 M

Fi otherwise;
ð9Þ

where F denotes the Fourier transform such that Fffg ¼

ðF1; � � � ;FnÞ is the molecular transform on the grid points in

reciprocal space, Ii is the value of the intensity data at grid

point i and M denotes the set of available intensity data. The

amplitudes jFij not in M are left to float.

An IPA generates a sequence of points f j, starting at a

random position in the metric space, that are used to locate the

solution. Note that the points f j are not themselves estimates

of the electron density, but are used to find the electron

density, and are referred to as the ‘iterate’. At the jth iteration

of an IPA, the current iterate f j is updated to form the next

iterate f jþ1 using an update rule that is a combination of

the projections PS and PM acting on f j. Different IPAs are

distinguished by different update rules. An effective IPA is the

difference map (DM) algorithm (Elser, 2003a), which has the

update rule

f jþ1 ¼ f j þ � PSLMf j � PMLSf j

� �
; ð10Þ

where � is a parameter, and the operators LS and LM are

called relaxed projections, given by

LSf j ¼ 1þ �Mð ÞPSf j � �Mf j

LMf j ¼ 1þ �S

� �
PMf j � �Sf j; ð11Þ

where �S and �M (usually fixed) are called relaxation para-

meters. Good convergence is generally obtained by setting the

relaxation parameters to �S ¼ �1=� and �M ¼ 1=� (Elser,

2003a) and the algorithm then has the single parameter �. A

useful property of the DM algorithm is that once it converges,

i.e. f jþ1 ¼ f j, a solution that satisfies both constraints, f̂f, can be

obtained immediately as

f̂f ¼ PSLMf j ¼ PMLSf j: ð12Þ

The DM algorithm has good global convergence properties

and is the algorithm we have chosen to apply to the nano-

crystallography phase-retrieval problem.

4. Noise amplification and its amelioration

The primary difficulty with direct phasing in nanocrystallo-

graphy as proposed above is that the estimates of the mole-

cular transform obtained between the Bragg reflections are

highly noisy. This can be seen as follows. If we additively

decompose the noisy measured average intensity into its

noiseless component, hInðuÞin, and the (photon) noise contri-

bution, noiseðuÞ, and denote by FðuÞ
�� ��

P
the estimated mole-

cular transform magnitude that is used for phasing, then

equation (3) is replaced by

In uð Þ
� �

n
þnoiseðuÞ ¼ FðuÞ

�� ��2
P
Q2
ðuÞ: ð13Þ

The estimated molecular transform amplitude obtained from

the data is then given by

FðuÞ
�� ��2

P
¼ FðuÞ
�� ��2þ noiseðuÞ

Q2ðuÞ
ð14Þ

and the noise is therefore amplified in regions where Q2ðuÞ is

small, i.e. between the Bragg reflections. The statistics of this

noise amplification are described by Chen et al. (2014). A key

observation from that analysis is that the SNR at a sample

position ui in reciprocal space for the phasing intensity is

proportional to the value of the averaged shape transform at

that position, i.e.

SNRPi / QðuiÞ; ð15Þ

where SNRPi is the SNR for the phasing intensity at position

ui, calculated as the mean of the diffracted signal divided by

the standard deviation of the noise. Note that the overall SNR

of the whole derived data set, denoted SNRP, calculated by

taking the mean of the signal mean over all reciprocal-space

data positions divided by the mean of the standard deviation

of the noise, again over all available reciprocal-space positions,

is smaller than the overall SNR of the measured data set,

denoted SNRM, as a result of the division by Q2ðuÞ. This

deterioration of the SNR of the phasing amplitude relative to

the measured amplitude can be quantified by the ratio

SNRP

SNRM

¼
1

p

Xp

i¼1

Q2
ðuiÞ

Xp

i¼1

1

Q2ðuiÞ

" #�1=2

ð16Þ

and worsens (gets smaller) as the mean crystallite size

increases (Chen et al., 2014).

Since QðuiÞ has a wide dynamic range, so does SNRPi, which

needs to be considered in the phase-retrieval process.

Furthermore, the averaged shape transform Q2ðuÞ, which is

estimated from the data, gives an estimate of SNRPi for each

datum i. Our objective, therefore, is to use this information to

ameliorate, as much as possible, the deleterious effects of the

variable SNR on the reconstructed electron density.

Since the SNR is spatially variable in reciprocal space, our

strategy is to sample the data in such a way as to maximize the

SNR of the data needed for phase retrieval. It is necessary to

consider both the number of data used (to ensure that the

problem remains well determined) and their positions in

reciprocal space (to maximize the phasing SNR). For

computational convenience, the diffraction amplitude data are

sampled onto a grid in reciprocal space that is finer than the

reciprocal lattice. If this grid oversamples reciprocal space by a

factor s in each direction relative to the reciprocal lattice, then

the oversampling factor O of the three-dimensional data set is

defined as

O ¼ s3: ð17Þ

Since we are using an estimate of the continuous molecular

transform to estimate the electron density, we effectively have

a phase problem for a single particle (the contents of one unit

cell). Under these circumstances, and under the assumption

that the molecular support region is approximately convex

and centrosymmetric, the minimum number of amplitude data

required to uniquely define the electron density is twice the

number of Bragg samples at the particular resolution of the
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data (Miao et al., 1998; Elser & Millane, 2008), i.e. uniqueness

requires that O> 2. Our approach then is to retain a subset of

the oversampled amplitude data with the largest SNR and use

these for phase retrieval. The amplitudes at the remaining data

points are determined by the real-space constraints, i.e. they

are allowed to float. If, as a result of removing data with a low

SNR, a proportion 0 � P � 1 of the data are retained, then

the oversampling factor of the data used for phasing, denoted

OP, is

OP ¼ PO ¼ Ps3: ð18Þ

Uniqueness of the solution then requires that OP > 2, and a

margin on this inequality is desirable in practice.

Increasing the oversampling s increases the size of the

computational grid by a factor s3, so it is desirable to keep s as

small as possible. Since Q2ðuÞ provides an estimate of the SNR

of each datum, our objective is to retain data points where

Q2ðuÞ is large. For s ¼ 2, O ¼ 8, but the additional data (i.e. in

addition to the Bragg samples) are midway between the Bragg

reflections where Q2ðuÞ is smallest. This choice of s is therefore

unsuitable. For s ¼ 3, O ¼ 27, the points where Q2ðuÞ is

smallest are avoided, and O is large enough that a significant

proportion of the low-SNR data can be removed while still

satisfying OP > 2. For s ¼ 4, O ¼ 64, and some of the new

samples fall where Q2ðuÞ is smallest. Given the additional

computational cost for s ¼ 4, this value does not appear to

offer any advantages over s ¼ 3. Therefore, s ¼ 3 appears to

be a suitable value. Note that although increasing s increases

the number of data, the data points become closer together

and therefore the data become more correlated and less

information is added.

Since the SNR is proportional to Q2ðuÞ, a sensible approach

is to set a threshold, �, on Q2ðuÞ and to use the data for which

Q2ðuÞ>�. The threshold determines the proportion P of the

data that are retained and must be chosen such that OP is

sufficiently large. The effect of the threshold is illustrated in

one dimension in Fig. 1. The samples that are not used as data

(gray region in Fig. 1) are treated as missing data and their

values are made to float during the phase-retrieval process.

The threshold value is normalized such that it is unity at the

Bragg peaks.

For example, for the case of an orthorhombic unit cell with a

crystallite size distribution with the same marginal density in

the three directions, as a result of the symmetry of Q2ðuÞ and

of the reciprocal lattice, for s ¼ 3 there are four possible

sampling schemes corresponding to four values of �. These

sampling schemes are labelled A, B, C, D in order of

increasing � and their oversampling factors are listed in

Table 1. Scheme A corresponds to maximal oversampling (no

data removed) and scheme D corresponds to no oversampling

(Bragg samples only). Scheme C includes the Bragg samples

and the six samples closest to the Bragg samples on lines

parallel to the reciprocal-space axes. Scheme B excludes the

‘body diagonal’ additional samples from the full set of over-

sampled data of scheme A. We note that in general Q2ðuÞ will

tend to decrease monotonically with distance from the Bragg

samples so that in practice it will likely be sufficient, and more

convenient, to select sampling schemes based on this distance

rather than a threshold on the measured Q2ðuÞ.

5. Simulations

The selective sampling approach described in x4 was tested by

implementing different sampling schemes and retrieving the

phases of simulated diffraction data using the DM algorithm.

The simulations were conducted in three dimensions. The

molecule used for the simulations was the membrane protein

aquaporin 1 (AQP1) (Ren et al., 2000), for which a 32 �

32� 45 Å volume of the electron density, sampled on a 1 Å

grid, was used. Reciprocal space was oversampled by a factor

of three in each direction. This was done by zero-padding the

real-space volume out to 96� 96� 135 grid points prior to

calculating the Fourier transform. The true diffracted inten-

sities were calculated and corrupted with Poisson noise. The

noise level on the simulated data was manipulated as follows.

Letting Poð�Þ denote the Poisson distribution with parameter

� and I the original noiseless value of the intensity, the

corrupted intensity is calculated as

Inoisy ¼
1

k
I0; ð19Þ

where the scaling factor k is a parameter that controls the

noise level and I 0 is drawn from the distribution PoðkIÞ. Thus

the larger the value of k, the smaller the Poisson noise and the
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Figure 1
A threshold (dotted line) on the averaged shape transform (dashed line)
determines the regions (gray) where the intensity data are not used. The
solid line shows the noisy estimate of the molecular transform.

Table 1
Oversampling factor OP and the proportion of data retained P for the
four sampling schemes for s ¼ 3 (O ¼ 27).

Sampling
scheme OP P

A 27 1.00
B 19 0.70
C 7 0.26
D 1 0.04



larger the SNR. The SNR of a Poisson random process is the

square root of the mean, so that in this case the SNR of the

sample intensity is ðkIÞ
1=2. The noiseless case can be thought of

as having a scaling factor k of infinity.

A Gaussian crystal size distribution is used with the same

mean number of unit cells in each direction, denoted �N , and a

standard deviation �N ¼ �N=3. This ensures that the prob-

ability of one side of a crystal being less than one unit cell is

negligible and the distribution is truncated at N ¼ 1. The

number of unit cells in each of the three directions are

assumed to be independent. For each value of �N considered,

the averaged shape transform Q2ðuÞ was calculated using

equation (5). The noisy amplitudes computed as described

above were divided by this averaged shape transform to

calculate the amplitudes to be used for phasing. Intensity

samples within a sphere of radius of five grid points centered

at the origin of reciprocal space were discarded to simulate the

effect of the X-ray beam stop. The intensity samples outside a

sphere of radius 0.5 Å�1 in reciprocal space were also not

used, resulting in a resolution of the reconstructed electron

density of 2 Å. The high resolution limit reduces the number

of data and hence the oversampling factor, by a factor of about

two.

The DM algorithm as described in x3 was used to recon-

struct the electron density for different average crystal sizes

and noise levels. The algorithm parameter � was set to 0.7.

Constraints imposed in real space are the support constraint

being the same size as the density within the zero-padded

array, and reality of the electron density. The constraint in

reciprocal space is that the amplitudes are equal to the data

values except for those samples outside the resolution sphere,

around the origin of reciprocal space within the obscured zone

of the beam stop, and those which are excluded by the parti-

cular sampling scheme used. The amplitudes in the excluded

regions are allowed to float.

Progress of the algorithm is monitored by calculating the

crystallographic R factor

R ¼

P
u

��jF̂FðuÞj � jFðuÞjP��P
u FðuÞ
�� ��

P

ð20Þ

as a function of iteration, where jF̂FðuÞj is the Fourier magni-

tude of the estimated solution f̂f ðxÞ obtained using

equation (12) where x is the position in real space and FðuÞ
�� ��

P

is the Fourier magnitude data. The quality of the reconstruc-

tion is measured by calculating the root-mean-squared (r.m.s.)

error in the reconstructed electron density

e ¼
kf̂f � fk

kfk
¼

P
x f̂f ðxÞ � f ðxÞ
h i2

P
x f 2ðxÞ

8><
>:

9>=
>;

1=2

ð21Þ
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Figure 2
(a) The oversampling factor OP (squares) and the SNR ratio (triangles),
for sampling schemes A, B, C and D, with �N ¼ 10. (b) The SNR ratio for
the four sampling schemes as a function of mean crystallite size.

Figure 3
R factor (dotted line) and r.m.s. error (solid line) in the electron density
versus iteration using sampling schemes A (upper curves at the 1000th
iteration) and C (lower curves at the 1000th iteration), for (a)
SNRM ¼ 100 and (b) SNRM ¼ 20.
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Figure 4
Reconstructed electron densities for (a) SNRM ¼ 100 and (b) SNRM ¼ 20. The top rows show the projected views along the z axis and the bottom rows
the three-dimensional volume. The left and center columns are reconstructions using sampling schemes A and C, respectively, and the right column is the
true electron density.



as a function of iteration, where k � k is the Euclidean norm,

and f and f ðxÞ denote the true electron density.

6. Results

Simulations were conducted for the two values SNRM = 100

and 20. An oversampling factor s ¼ 3 in each direction and a

mean crystal size �N ¼ 10 were used, and reconstructions

calculated using the four sampling schemes listed in Table 1.

The DM algorithm was run for 1000 iterations, starting with a

random electron density. The final reconstructed electron

density was chosen as that with the minimum value of R.

The oversampling factor OP and the expected SNR ratio

SNRP=SNRM calculated using equation (16) for the four

sampling schemes are shown in Fig. 2(a). Note that the values

of OP in Fig. 2(a) are smaller than those in Table 1 as a result

of removal of the high-resolution data as described in x5.

Inspection of Fig. 2(a) shows that the best SNR with sufficient

oversampling factor (O> 2) is obtained with sampling scheme

C. The overall SNR ratio for the four sampling schemes is

shown versus mean crystal size in Fig. 2(b). This shows the

deterioration in SNRP relative to SNRM with increasing

crystal size as noted previously (Chen et al., 2014) and also the

improvement in SNRP for sampling schemes B and C over

using all samples (scheme A). Note that, for a fixed incident

X-ray pulse flux, SNRM will increase with increasing crystallite

size.

For the simulated reconstructions, the R factor and r.m.s.

error versus iteration of the algorithm for sampling schemes A

and C are shown in Fig. 3. For both SNRs, the algorithm

converges to a low r.m.s. error for the selective sampling

scheme C but not when all samples are used (sampling scheme

A). This shows the advantage of selecting the data with the

best SNR. The resulting reconstructed electron densities are

shown in the left and center columns of Fig. 4, where they are

compared to the true electron density (right column). It is

clear that using the selective sampling leads to an inter-

pretable density whereas using all the data does not.

The R factor and electron-density r.m.s. error for the final

reconstructions using the four sampling schemes A–D are

shown in Fig. 5, where it is seen that sampling scheme C does

indeed give the best reconstruction. Referring to Figs. 2(a) and

5, the reconstructions improve as the SNR ratio increases and

data are removed until the point at which there are not enough

data, at sampling scheme D, where O< 2. Note that for

sampling scheme D a small R factor is obtained since the

problem is under-constrained and the algorithm finds one of a

multitude of incorrect solutions that satisfy the data.

For a fixed SNRM, SNRP deteriorates as the mean crystal

size of the nanocrystals increases. Simulations were conducted

for a range of noise levels in the data and crystallite sizes. The

results are shown in Fig. 6, which shows the error in the final

reconstructions versus the noise level in the data (noise-to-

signal ratio NSRM ¼ 1=SNRM) and the mean crystal size for

sampling schemes A and C. Inspection of Fig. 6 shows that for

a particular crystal size, significantly larger noise levels can be

tolerated by using the sample-selection scheme.

7. Discussion

Nanocrystallography using X-ray free-electron lasers offers

the possibility of direct phasing of the diffraction data using

measurement of the diffracted intensity between the Bragg

reflections to estimate the molecular transform. This estimate

is noisy however at positions between the Bragg reflections. To

address this problem, a selective sampling strategy that retains

only the measured intensity samples that have a highest signal-

to-noise ratio is employed. The averaged shape transform that

is estimated from the diffraction data can be used to determine

this sampling scheme, although in practice a scheme based on

the distance of samples from the Bragg reflections is probably

sufficient. Oversampling the reciprocal lattice by a factor of

three in each direction allows removal of low-SNR data while

retaining sufficient data for a unique solution and minimizing

the computational load. Simulations show that using this

selective sampling with the difference map algorithm allows

reconstruction at lower SNR than if all the data are used. The

results show the trade-off between noise level and crystallite

size that can be tolerated for direct phasing in nanocrystallo-

graphy.
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Figure 5
R factor (dotted line) and electron density r.m.s. error (solid line) of the
final reconstructions for sampling schemes A–D for SNRM ¼ 100 (lower
curves at C) and SNRM ¼ 20 (upper curves at C).

Figure 6
Contour plots of constant r.m.s. error in the reconstructed electron
density for sampling scheme A (left three curves) and sampling scheme C
(right three curves), versus mean crystal size and noise-to-signal ratio for
the measured data NSRM. The r.m.s. error is contoured at 0.2, 0.3 and 0.4
for both sampling schemes.
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